By Topic

Ultrafast Operation of Digital Coherent Receivers Using Their Time-Division Demultiplexing Function

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chao Zhang ; Dept. of Electron. Eng., Univ. of Tokyo, Tokyo ; Yojiro Mori ; Koji Igarashi ; Kazuhiro Katoh
more authors

The digital coherent receiver, which is a combination of a phase-diversity optical homodyne receiver and digital signal processing (DSP), can demodulate any multilevel coded optical signals without relying upon an optical phase-locked loop. However, the maximum symbol rate processed by such a receiver is limited by the speed of electric analog-to-digital converters and digital signal processors. Although real-time operation at 10 Gsymbol/s using an application-specific integrated circuit has recently been demonstrated, it is still difficult to increase the symbol rate beyond 40 Gsymbol/s. In order to cope with this difficulty, we propose a novel scheme, which employs a local oscillator (LO) pulsed at the subharmonic frequency of the symbol rate, enabling time-division demultiplexing of the signal at the digital coherent receiver. We demonstrate that the new type of digital coherent receiver operating at 10 Gsymbol/s can demodulate the aggregate symbol rate of 160 Gsymbol/s. From these results, we can expect ultrafast coherent optical fiber communication in the future.

Published in:

Journal of Lightwave Technology  (Volume:27 ,  Issue: 3 )