By Topic

Efficient 2-D Integral Equation Approach for the Analysis of Power Bus Structures With Arbitrary Shape

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Martin Stumpf ; Dept. of Radio Electron., Brno Univ. of Technol., Brno ; Marco Leone

A 2-D contour integral-equation method for the frequency-domain analysis of arbitrarily shaped power bus structures is presented. The numerically efficient approach allows the rapid and accurate computation of the frequency-dependent transfer parameters between an arbitrary number of ports, as required for embedding the power plane structure into network simulation. A formulation is developed for calculating the voltage distribution between the planes, as well as for determining the resulting radiated fields based on the field-equivalence principle. The method is applied for several test boards including a populated board with a surface-mount decoupling-capacitor network. The suggested approach is well confirmed by an analytical solution for the rectangular structure, by measurement and 3-D full-wave simulation results.

Published in:

IEEE Transactions on Electromagnetic Compatibility  (Volume:51 ,  Issue: 1 )