System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Using a Walking Piezo Actuator to Drive and Control a High-Precision Stage

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Merry, R.J.E. ; Control Syst. Technol. Group, Eindhoven Univ. of Technol., Eindhoven ; de Kleijn, N. ; van de Molengraft, M.J.G. ; Steinbuch, M.

Piezoelectric actuators are commonly used for micropositioning systems at nanometer resolution. Increasing demands regarding the speed and accuracy are inducing the need for new actuators and new drive principles. A nonresonant piezoelectric actuator is used to drive a stage with 1-DOF through four piezoelectric drive legs. In order to improve the positioning accuracy of the stage, a new drive principle and control strategy for the walking piezomotor are proposed in this paper. The proposed drive principle results in overlapping tip trajectories of the drive legs, resulting in a continuous and smooth drive movement. Gain scheduling feedback in combination with feedforward control further improves the performance of the stage. With the developed drive principle and control strategy, the piezomotor is able to drive the stage at constant velocities between 100 nm/s and 1 mum/s with a tracking error below the encoder resolution of 5 nm. Constant velocities up to 2 mm/s are performed with tracking errors below 400 nm. Point-to-point movements between 5 nm and the complete stroke of the stage are performed with a final static error below the encoder resolution.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:14 ,  Issue: 1 )