By Topic

Does Quantum Mechanics Need Interpretation?

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Marchildon, L. ; Dept. de Phys., Univ. du Quebec, Trois-Rivieres, QC

Since the beginning, quantum mechanics has raised major foundational and interpretative problems. Foundational research has been an important factor in the development of quantum cryptography, quantum information theory and, perhaps one day, practical quantum computers. Many believe that, in turn, quantum information theory has bearing on foundational research. This is largely related to the so-called epistemic view of quantum states, which maintains that the state vector represents information on a system and has led to the suggestion that quantum theory needs no interpretation. I will argue that this and related approaches fail to take into consideration two different explanatory functions of quantum mechanics, namely that of accounting for classically unexplainable correlations between classical phenomena and that of explaining the microscopic structure of classical objects. If interpreting quantum mechanics means answering the question, "How can the world be for quantum mechanics to be true?", there seems to be no way around it.

Published in:

Quantum, Nano and Micro Technologies, 2009. ICQNM '09. Third International Conference on

Date of Conference:

1-7 Feb. 2009