By Topic

Hierarchical HMM-based semantic concept labeling model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mengistu, K.T. ; Cognitive Syst. Group, Otto-von-Guericke Univ., Magdeburg ; Hannemann, M. ; Baum, T. ; Wendemuth, A.

An utterance can be conceived as a hidden sequence of semantic concepts expressed in words or phrases. The problem of understanding the meaning underlying a spoken utterance in a dialog system can be partly solved by decoding the hidden sequence of semantic concepts from the observed sequence of words. In this paper, we describe a hierarchical HMM-based semantic concept labeling model trained on semantically unlabeled data. The hierarchical model is compared with a flat concept based model in terms of performance, ambiguity resolution ability and expressive power of the output. It is shown that the proposed method outperforms the flat-concept model in these points.

Published in:

Spoken Language Technology Workshop, 2008. SLT 2008. IEEE

Date of Conference:

15-19 Dec. 2008