By Topic

A queueing analysis of the performance of DQDB

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chen, C.Y.R. ; Dept. of Electr. & Comput. Eng., Syracuse Univ., NY, USA ; Makhoul, G.A. ; Meliksetian, D.S.

A queueing model for the DQDB protocol with a single priority level is presented and analyzed. The state of a node is defined by the number of requests in the distributed queue prior to, and post generation of a segment. It is shown that the number of states that a node can be in, is finite and position dependent. Moreover, it is shown that the request rate and the network traffic that a node perceives at any particular moment are highly dependent on its state. An iterative technique is presented to calculate the request rate and network traffic for all the nodes in a DQDB network by carefully modeling the relationship between adjacent nodes. The node average waiting time and average throughput are analyzed as functions of the node position and state in the network. Our results illustrate the effect of the various parameters on the waiting time and throughput. Comparisons with simulation and existing analytical results are presented

Published in:

Networking, IEEE/ACM Transactions on  (Volume:3 ,  Issue: 6 )