By Topic

Numerical Modeling of Thermoelectric Generators With Varing Material Properties in a Circuit Simulator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Min Chen ; Inst. of Energy Technol., Aalborg Univ., Aalborg ; Rosendahl, L.A. ; Condra, T.J. ; Pedersen, J.K.

When a thermoelectric generator (TEG) and its external load circuitry are considered together as a system, the codesign and co-optimization of the electronics and the device are crucial in maximizing the system efficiency. In this paper, an accurate TEG model is proposed and implemented in a SPICE-compatible environment. This model of thermoelectric battery accounts for all temperature-dependent characteristics of the thermoelectric materials to include the nonlinear voltage, current, and electrothermal coupled effects. It is validated with simulation data from the recognized program ANSYS and experimental data from a real thermoelectric device, respectively. Within a common circuit simulator, the model can be easily connected to various electrical models of applied loads to predict and optimize the system performance.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:24 ,  Issue: 1 )