By Topic

Fingerprinting With Minimum Distance Decoding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shih-Chun Lin ; Dept. of Electr. Engineeringand Grad. Inst. of Commun. Eng., Nat. Taiwan Univ., Taipei ; Shahmohammadi, M. ; El Gamal, H.

This paper adopts an information-theoretic framework for the design of collusion-resistant coding/decoding schemes for digital fingerprinting. More specifically, the minimum distance decision rule is used to identify 1 out of t pirates. Achievable rates, under this detection rule, are characterized in two scenarios. First, we consider the averaging attack where a random coding argument is used to show that the rate 1/2 is achievable with t=2 pirates. Our study is then extended to the general case of arbitrary t highlighting the underlying complexity-performance tradeoff. Overall, these results establish the significant performance gains offered by minimum distance decoding compared to other approaches based on orthogonal codes and correlation detectors which can support only a subexponential number of users (i.e., a zero rate). In the second scenario, we characterize the achievable rates, with minimum distance decoding, under any collusion attack that satisfies the marking assumption. For t=2 pirates, we show that the rate 1-H(0.25) ap 0.188 is achievable using an ensemble of random linear codes. For t ges 3, the existence of a nonresolvable collusion attack, with minimum distance decoding, for any nonzero rate is established. Inspired by our theoretical analysis, we then construct coding/decoding schemes for fingerprinting based on the celebrated belief-propagation framework. Using an explicit repeat-accumulate code, we obtain a vanishingly small probability of misidentification at rate 1/3 under averaging attack with t=2. For collusion attacks, which satisfy the marking assumption, we use a more sophisticated accumulate repeat accumulate code to obtain a vanishingly small misidentification probability at rate 1/9 with t=2. These results represent a marked improvement over the best available designs in the literature.

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:4 ,  Issue: 1 )