By Topic

The StageNet fabric for constructing resilient multicore systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Shantanu Gupta ; Advanced Computer Architecture Laboratory, University of Michigan, Ann Arbor, 48109, USA ; Shuguang Feng ; Amin Ansari ; Jason Blome
more authors

Scaling of CMOS feature size has long been a source of dramatic performance gains. However, the reduction in voltage levels has not been able to match this rate of scaling, leading to increasing operating temperatures and current densities. Given that most wearout mechanisms that plague semiconductor devices are highly dependent on these parameters, significantly higher failure rates are projected for future technology generations. Consequently, high reliability and fault tolerance, which have traditionally been subjects of interest for high-end server markets, are now getting emphasis in the mainstream desktop and embedded systems space. The popular solution for this has been the use of redundancy at a coarse granularity, such as dual/triple modular redundancy. In this work, we challenge the practice of coarse-granularity redundancy by identifying its inability to scale to high failure rate scenarios and investigating the advantages of finer-grained configurations. To this end, this paper presents and evaluates a highly reconfigurable multicore architecture, named StageNet (SN), that is designed with reliability as its first class design criteria. SN relies on a reconfigurable network of replicated processor pipeline stages to maximize the useful lifetime of a chip, gracefully degrading performance towards the end of life. Our results show that the proposed SN architecture can perform nearly 50% more cumulative work compared to a traditional multicore.

Published in:

2008 41st IEEE/ACM International Symposium on Microarchitecture

Date of Conference:

8-12 Nov. 2008