By Topic

Needle Insertion Parameter Optimization for Brachytherapy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ehsan Dehghan ; Dept. of Electr. & Comput. Eng., Univ. of British Columbia, Vancouver, BC ; Septimiu E. Salcudean

This paper presents a new needle path planning method for the insertion of rigid needles into deformable tissue. The needle insertion point, needle heading, and needle depth are optimized by minimizing the distance between a rigid needle and a number of targets in the tissue. The optimization method is based on iterative simulations performed using a tissue finite element model. At each iteration, the best 3-D line fitted to the displaced targets in the deformed tissue is used as a candidate for a new insertion line. First, this method is implemented in a prostate brachytherapy simulator under different boundary conditions to minimize the targeting error. It is shown that the optimization method converges in a few iterations and decreases the seed misplacement error to less than the needle diameter. Second, the efficacy of the optimization algorithm is verified by optimizing the insertion parameters for a brachytherapy needle before insertion into a prostate tissue phantom. The elastic properties of the phantom and the needle-tissue interaction parameters were identified in an independent experiment. The optimization algorithm is effective in decreasing the targeting error.

Published in:

IEEE Transactions on Robotics  (Volume:25 ,  Issue: 2 )