By Topic

Waveform-Diversity-Based Millimeter-Wave UAV SAR Remote Sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wen-Qin Wang ; Sch. of Commun. & Inf. Eng., Univ. of Electron. Sci. & Technol. of China, Chengdu ; Qicong Peng ; Jingye Cai

To integrate a synthetic aperture radar (SAR) into an operational unmanned airborne vehicle (UAV), it should be as small as possible to meet stringent limitations of size, weight, and power consumption. It appears that the novel combination of millimeter-wave frequency-modulated continuous-wave (FMCW) technology and SAR techniques can provide an optimal solution. However, some efficient techniques should be applied to resolve range/Doppler ambiguities in FMCW UAV SAR systems. As such, a technique of waveform-diversity-based millimeter-wave UAV SAR imaging is presented in this paper. Along with the described system concept and signal model, the performance of the diversified waveforms evaluated by their cross correlations is detailed. As the conventional stop-and-go approximation is not valid for FMCW SAR, a modified wavenumber-domain algorithm with a consideration of continuous antenna motion during transmission and reception is derived. This imaging algorithm is validated with computer simulations. Furthermore, one parallel direct-digital-synthesizer-driven phase-locked-loop synthesizer with adaptive nonlinearity compensation, which has been validated by the experimental results, is proposed to obtain a millimeter-wave FMCW signal with fine frequency linearity.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:47 ,  Issue: 3 )