Cart (Loading....) | Create Account
Close category search window
 

3-D Radargrammetric Modeling of RADARSAT-2 Ultrafine Mode: Preliminary Results of the Geometric Calibration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Toutin, T. ; Natural Resources Canada, Canada Centre for Remote Sensing, Ottawa, ON ; Chenier, R.

The geometry and the accuracy of the 3-D cartographic localization of RADARSAT-2 images are being evaluated as part of the Canadian Space Agency's Science and Operational Applications Research program. In a first step, the Toutin's 3-D physical model, previously developed for RADARSAT-1, was adapted to RADARSAT-2 sensor and applied to two ultrafine mode images (U2 and U25) acquired over an area in Beauport, Quebec. Both the 3-D modeling computed with only 12 ground control points and its geometric localization were evaluated with different check data: 1) independent check points; 2) the two quasi-epipolar images; 3) the two orthoimages; and 4) 1-m accurate orthophotos. All four results and validations are in agreement and confirm that the 3-D geometric localization and restitution accuracy are 1 m in planimetry and 2 m in elevation. The checked data error being included in these evaluations and the relative error computed from the quasi-epipolar comparison provided a high level of confidence that the precision of Toutin's 3-D radargrammetric model is better than 0.25 m.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:6 ,  Issue: 2 )

Date of Publication:

April 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.