By Topic

On Detecting Edges

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vishvjit S. Nalwa ; Artificial Intelligence Laboratory and the Information Systems Laboratory, Stanford University, Stanford, CA 94305. ; Thomas O. Binford

An edge in an image corresponds to a discontinuity in the intensity surface of the underlying scene. It can be approximated by a piecewise straight curve composed of edgels, i.e., short, linear edge-elements, each characterized by a direction and a position. The approach to edgel-detection here, is to fit a series of one-dimensional surfaces to each window (kernel of the operator) and accept the surface-description which is adequate in the least squares sense and has the fewest parameters. (A one-dimensional surface is one which is constant along some direction.) The tanh is an adequate basis for the stepedge and its combinations are adequate for the roofedge and the line-edge. The proposed method of step-edgel detection is robust with respect to noise; for (step-size/¿noise) ¿ 2.5, it has subpixel position localization (¿position < ¿) and an angular localization better than 10°; further, it is designed to be insensitive to smooth shading. These results are demonstrated by some simple analysis, statistical data, and edgelimages. Also included is a comparison of performance on a real image, with a typical operator (Difference-of-Gaussians). The results indicate that the proposed operator is superior with respect to detection, localization, and resolution.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:PAMI-8 ,  Issue: 6 )