By Topic

A Combinatorial Approach for Classification of Patterns with Missing Information and Random Orientation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Thomas E. Flick ; Naval Research Laboratory, Washington, DC 20375. ; K. Lee Jones

A maximum likelihood approach is developed for a pattern recognition problem where the patterns are described by configurations of simple easily recognized parts called primitives. The approach is capable of dealing with three types of noise: measurement noise in the location and shape of observed primitives, undetected or missing primitives (leakage), and the unexpected appearance of extra primitives (false alarms). The approach is called combinatorial because the likelihood function dictates that observed primitives must be assigned to known primitives in all possible combinations. Due to the complexity of the likelihood function, practical classifiers must be based on likelihood function approximations. Several are proposed, and most of these are simple enough to be used in a gradient search strategy for recognizing distorted patterns with random orientations. Examples are included to show the characteristics of combinatorial classifier performance.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:PAMI-8 ,  Issue: 4 )