Cart (Loading....) | Create Account
Close category search window

A Semantically Enriched Clinical Guideline Model Enabling Deployment in Heterogeneous Healthcare Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Laleci, G.B. ; Dept. of Comput. Eng., Middle East Tech. Univ., Ankara ; Dogac, A.

Clinical guidelines are developed to assist healthcare practitioners to make decisions on patient's medical problems, and as such they communicate with external applications to retrieve patient data to initiate medical actions through clinical workflows, and transmit information to alert/reminder systems. The interoperability problems in the healthcare information technology domain prevent wider deployment of clinical guidelines because each deployment requires a tedious custom adaptation phase. In this paper, we provide machine-processable mechanisms that express the semantics of clinical guideline interfaces so that automated processes can be used to access the clinical resources for guideline deployment and execution. To be able to deploy the semantically extended guidelines to healthcare settings semiautomatically, the underlying application's semantics must also be available. We describe how this can be achieved based on two prominent implementation technologies in use in the eHealth domain: integrating healthcare enterprise cross-enterprise document sharing integration profile for discovering and exchanging electronic healthcare records and Web service technology for interacting with the clinical workflows and wireless medical sensor devices. The system described in this paper is realized within the scope of the SAPHIRE Project.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:13 ,  Issue: 2 )

Date of Publication:

March 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.