By Topic

Cardiac Motion Recovery via Active Trajectory Field Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gilliam, A.D. ; C.L. Brown Dept. of Electr. & Comput. Eng., Univ. of Virginia, Charlottesville, VA ; Epstein, F.H. ; Acton, S.T.

Cardiovascular researchers are constantly developing new and innovative medical imaging technologies, striving to improve the understanding, diagnosis, and treatment of cardiovascular dysfunction. Combining these sophisticated imaging methods with advancements in image understanding via computational intelligence will continue to advance the frontier of cardiovascular medicine. Recently, researchers have turned to a new class of tissue motion imaging techniques, including displacement encoding with stimulated echoes (DENSE) in cardiac magnetic resonance (cMR) imaging, to directly quantify cardiac displacement and produce accurate spatiotemporal measurements of myocardial strain, twist, and torsion. The associated analysis of DENSE cMR and other tissue motion imagery, however, represents a major bottleneck in the study of intramyocardial mechanics. In the computational intelligence area of deformable models, this paper develops an automated motion recovery technique termed active trajectory field models (ATFMs) geared toward these new motion imaging protocols, offering quantitative physiological measurements without the pains of manual analyses. This novel generative deformable model exploits both image information and prior knowledge of cardiac motion, utilizing a point distribution model derived from a training set of myocardial trajectory fields to automatically recover cardiac motion from a noisy image sequence. The effectiveness of the ATFM method is demonstrated by quantifying myocardial motion in 2-D short-axis murine DENSE cMR image sequences both before and after myocardial infarction, producing results comparable to existing semiautomatic analysis methods.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:13 ,  Issue: 2 )