By Topic

Performance evaluation of a transmission reconstruction algorithm with simultaneous transmission-emission SPECT system in a presence of data truncation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Maniawski, P.J. ; Picker Int., Bedford Heights, OH, USA ; Morgan, H.T. ; Gullberg, G.T. ; Zeng, G.L.
more authors

A simultaneous transmission-emission SPECT system (STEP) was developed on a three-detector gamma camera (Picker Prism 3000) equipped with fan-beam collimators (65 cm focal length) and a transmission line source. With this system, fan-beam geometry can cause transmission projection data to be truncated. An iterative transmission reconstruction algorithm was formulated to determine the distribution of attenuation coefficients from the system of linear equations for only measured projections. In this paper we evaluated this algorithm using phantom data with varying degree of data truncation. The results showed that with up to 30% truncation, differences in partial attenuation integrals in the non-truncated region were statistically not significant (p<0.05). Also, a study was performed to determine the minimal number of iterations necessary to obtain quantitatively accurate results. It was shown that partial attenuation integrals were not significantly different (p<0.05) when 9 to 100 iterations were performed. We conclude that the described transmission reconstruction algorithm using nine iterations is quantitatively accurate and is able to correct for the truncation of the data

Published in:

Nuclear Science Symposium and Medical Imaging Conference, 1994., 1994 IEEE Conference Record  (Volume:4 )

Date of Conference:

30 Oct-5 Nov 1994