By Topic

Noninvasive Carotid Strain Imaging Using Angular Compounding at Large Beam Steered Angles: Validation in Vessel Phantoms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hansen, H.H.G. ; Dept. of Pediatrics, Radboud Univ. Nijmegen Med. Centre, Nijmegen ; Lopata, R.G.P. ; de Korte, C.L.

Stroke and myocardial infarction are initiated by rupturing vulnerable atherosclerotic plaques. With noninvasive ultrasound elastography, these plaques might be detected in carotid arteries. However, since the ultrasound beam is generally not aligned with the radial direction in which the artery pulsates, radial and circumferential strains need to be derived from axial and lateral data. Conventional techniques to perform this conversion have the disadvantage that lateral strain is required. Since the lateral strain has relatively poor accuracy, the quality of the radial and circumferential strains is reduced. In this study, the radial and circumferential strain estimates are improved by combining axial strain data acquired at multiple insonification angles. Adaptive techniques to correct for grating lobe interference and other artifacts that occur when performing beam steering at large angles are introduced. Acquisitions at multiple angles are performed with a beam steered linear array. For each beam steered angle, there are two spatially restricted regions of the circular vessel cross section where the axial strain is closely aligned with the radial strain and two spatially restricted regions (different from the radial strain regions) where the axial strain is closely aligned with the circumferential strain. These segments with high quality strain estimates are compounded to form radial or circumferential strain images. Compound radial and circumferential strain images were constructed for a homogeneous vessel phantom with a concentric lumen subjected to different intraluminal pressures. Comparison of the elastographic signal-to-noise ratio (SNRe) and contrast-to-noise ratio ( CNRe) revealed that compounding increases the image quality considerably compared to images from 0deg information only. SNRe and CNRe increase up to 2.7 and 6.6 dB, respectively. The highest image quality was achieved by projecting axial- data, completed with a small segment determined by either principal component analysis or by application of a rotation matrix.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:28 ,  Issue: 6 )