By Topic

A Bipolar-Selected Phase Change Memory Featuring Multi-Level Cell Storage

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

16 Author(s)

In this paper, a 90-nm 128-Mcell non-volatile memory based on phase-change Ge2-Sb2-TeB alloy is presented. Memory cells are bipolar selected, and are based on a /xtrench architecture. Experimental investigation on multi-level cell (MLC) storage is addressed exploiting the chip MLC capability. To this end, a programming algorithm suitable for 2 bit/cell storage achieving tightly placed inner states (in terms of cell current or resistance) is proposed. Measurements showed the possibility of placing the required distinct cell current distributions, thus demonstrating the feasibility of the MLC phase-change memory (PCM) storage concept. Endurance tests were also carried out. Cumulative distribu tions after 2-bit/cell programming before cycling and after 100 k program cycles followed by 1 h/150 degC bake are presented. Experimental results on MLC endurance are also provided from a 180-nm 8-Mb PCM demonstrator with the same mutrench cell structure.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:44 ,  Issue: 1 )