By Topic

A Fully Performance Compatible 45 nm 4-Gigabit Three Dimensional Double-Stacked Multi-Level NAND Flash Memory With Shared Bit-Line Structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
Ki-Tae Park ; Semicond. R&D Center, Samsung Electron. Co., Ltd., Hwasung ; Myounggon Kang ; Soonwook Hwang ; Doogon Kim
more authors

A 3-dimensional double stacked 4 gigabit multilevel cell NAND flash memory device with shared bitline structure have successfully developed. The device is fabricated by 45 nm floating-gate CMOS and single-crystal Si layer stacking technologies. To support fully compatible device performance and characteristics with conventional planar device, shared bitline architecture including Si layer-dedicated decoder and Si layer-compensated control schemes are also developed. By using the architecture and the design techniques, a memory cell size of 0.0021 mum2/bit per unit feature area which is smallest cell size and 2.5 MB/s program throughput with 2 kB page size which is almost equivalent performance compared to conventional planar device are realized.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:44 ,  Issue: 1 )