By Topic

Matching the speed gap between SRAM and DRAM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Feng Wang ; Dept. of Comput. Sci. & Eng., Hong Kong Univ. of Sci. & Technol., Hongkong ; Hamdi, M.

With the constantly increasing Internet traffic, buffers are becoming major bottlenecks for todaypsilas high-end routers. In particular, router buffers are required to have both high speed and large capacities, which are hard to build with current single memory technology, such as SRAM or DRAM. A general approach is to make a combination of the SRAM and DRAM and exploit advantages from both. The main obstacle is to find a way matching the speed gap between them. And the requirement to maintain multiple flows in the system further complicates the problem. In this paper, we first investigate previous solutions that use different access granularities to match the speed gap. We point out their intrinsic scaling problems when the number of flows increases. Then, we propose to use parallelism to match the speed gap. Numerical studies and simulations both show that our proposal can theoretically support any number of flows in the router with just little SRAM under practical traffic. In addition, the memory management algorithm is also more scalable compared to those in previous solutions.

Published in:

High Performance Switching and Routing, 2008. HSPR 2008. International Conference on

Date of Conference:

15-17 May 2008