Cart (Loading....) | Create Account
Close category search window
 

Effective mapping of artificial neural network algorithms onto massively parallel hardware: the REMAP programming environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Guang Li ; Dept. of Comput. Eng., Chalmers Univ. of Technol., Goteborg, Sweden ; Svensson, B.

The application of artificial neural networks (ANN) in real-time embedded systems demands high performance computers. Miniaturized massively parallel architectures are suitable computation platforms for this task. An important question which arises is how to establish an effective mapping from ANN algorithms to hardware. In this paper, we demonstrate how an effective mapping can be achieved with our programming environment in close combination with an optimized architecture design targeted for neuro-computing

Published in:

Algorithms and Architectures for Parallel Processing, 1995. ICAPP 95. IEEE First ICA/sup 3/PP., IEEE First International Conference on  (Volume:2 )

Date of Conference:

19-21 Apr 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.