By Topic

Size quantization and thermoelectric properties of bismuth telluride nanowires

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bejenari, I.M. ; Inst. of Electron. Eng. & Ind. Technol., Acad. of Sci. of Moldova, Kishinev ; Kantser, V.G.

Electronic structure of bismuth telluride quantum wires with growth directions [110] and [015] is studied in the framework of anisotropic effective mass method using parabolic band approximation. The components of the electron and hole effective mass tensor for six valleys are calculated for both growth directions. In the temperature range from 77 K to 500 K, the dependence of the quantum wire Seebeck coefficient, S, electron thermal, kappa, and electrical, sigma, conductivity as well as figure of merit, ZT, on the square quantum wire thickness and excess hole concentration, pex, are investigated in constant relaxation time approximation. For p-type Bi2Te3 quantum wires, the maximum value of the figure of merit is equal to 1.4; 1.6; and 2.8 at the corresponding temperatures 310 K; 390 K; 480 K and quantum wire thickness 30 nm; 15 nm, and 7 nm (pex=5times1018 cm-3).

Published in:

Semiconductor Conference, 2008. CAS 2008. International  (Volume:2 )

Date of Conference:

13-15 Oct. 2008