By Topic

A Holistic Approach to Decentralized Structural Damage Localization Using Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hackmann, G. ; Dept. of Comput. Sci. & Eng., Washington Univ. in St. Louis, St. Louis, MO ; Fei Sun ; Castaneda, N. ; Chenyang Lu
more authors

Wireless sensor networks (WSNs) have become an increasingly compelling platform for structural health monitoring (SHM) applications, since they can be installed relatively inexpensively onto existing infrastructure. Existing approaches to SHM in WSNs typically address computing system issues or structural engineering techniques, but not both in conjunction. In this paper, we propose a holistic approach to SHM that integrates a decentralized computing architecture with the damage localization assurance criterion algorithm. In contrast to centralized approaches that require transporting large amounts of sensor data to a base station, our system pushes the execution of portions of the damage localization algorithm onto the sensor nodes, reducing communication costs by an order of magnitude in exchange for moderate additional processing on each sensor. We present a prototype implementation of this system built using the TinyOS operating system running on the Intel Imote2 sensor network platform. Experiments conducted using two different physical structures demonstrate our system's ability to accurately localize structural damage. We also demonstrate that our decentralized approach reduces latency by 64.8% and energy consumption by 69.5% compared to a typical centralized solution, achieving a projected lifetime of 191 days using three standard AAA batteries. Our work demonstrates the advantages of a holistic approach to cyber-physical systems that closely integrates the design of computing systems and physical engineering techniques.

Published in:

Real-Time Systems Symposium, 2008

Date of Conference:

Nov. 30 2008-Dec. 3 2008