By Topic

An efficient architecture for fault-tolerant ATM switches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Padmanabhan, K. ; AT&T Bell Labs., Murray Hill, NJ, USA

A cost-effective fault-tolerant architecture called FAUST is presented for ATM switches. The key idea behind the architecture is the incorporation of spare units and associated commutation logic into strategic partitions of the switching system. The definition of a replaceable unit is flexible, and based on packaging considerations. The commutation logic can switch in a spare unit in place of a failed one at cell rate, and is distributed entirely in the existing switch control units. So the additional overhead is almost entirely in the spare modules provided. The technique is far superior to a duplex configuration in terms of reliability improvement vs. component redundancy, and can be applied to established architectures for ATM switches, including multistage sort and shared memory based architectures. Its scalability also makes it applicable to system sizes from a few tens of lines to a few thousand

Published in:

Networking, IEEE/ACM Transactions on  (Volume:3 ,  Issue: 5 )