Cart (Loading....) | Create Account
Close category search window
 

Design of Exactly Linear Phase K -Regular IIR Half-Band Filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hoang, H.G. ; Sch. of Electr. Eng. & Telecommun., Univ. of New South Wales, Sydney, NSW ; Hoang Duong Tuan ; Nguyen, T.Q. ; Kha, H.H.

This paper proposes a novel method to design exactly linear phase infinite impulse response half-band filters with arbitrary regularity. Broadly speaking, the design problem is formulated as a semi-infinite program, which is then turned into a semidefinite program of minimal order via a new linear matrix inequality characterization of convex hulls of trigonometric polynomials. In contrast to maximally flat approach, the proposed method allows direct control of various design parameters, which in turn enables the synthesis of filters with better transition response. The viability of the proposed method is demonstrated through several numerical examples.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:55 ,  Issue: 12 )

Date of Publication:

Dec. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.