By Topic

Zero Assignment for Robust H_{2}/H_{\infty } Fault Detection Filter Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xuewu Dai ; Sch. of Electron. & Inf. Eng., Southwest Univ., Chongqing ; Zhiwei Gao ; Breikin, T. ; Hong Wang

In practical engineering, it is inevitable that a system is perturbed by noise signals. Unfortunately, H infin /H infin filtering may fail to detect some faults when the noise distribution matrix are the same as the fault distribution matrix. In this paper, it is shown that the dynamic feedback gain of a dynamic filter introduces additional zeros to the filter, and both the filter poles and the additional zeros can be assigned arbitrarily. In order to attenuate band-limited noises, the zero assignment technique is used, and an optimal dynamic fault detection filtering approach is proposed by locating the zeros to the noise frequencies and optimizing the poles. Compared to other dynamic filter design approaches, the zero assignment technique gives a better tradeoff between more design freedom and computation costs. As shown in the simulation, a better noise attenuation and fault detection performance have been obtained. The zero assignment in multivariable fault detection filter design would be the main contribution of this paper.

Published in:

Signal Processing, IEEE Transactions on  (Volume:57 ,  Issue: 4 )