By Topic

Detecting Human Behavior Models From Multimodal Observation in a Smart Home

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Brdiczka, O. ; Palo Alto Res. Center, Comput. Sci. Lab., Palo Alto, CA, USA ; Langet, M. ; Maisonnasse, J. ; Crowley, J.L.

This paper addresses learning and recognition of human behavior models from multimodal observation in a smart home environment. The proposed approach is part of a framework for acquiring a high-level contextual model for human behavior in an augmented environment. A 3-D video tracking system creates and tracks entities (persons) in the scene. Further, a speech activity detector analyzes audio streams coming from head set microphones and determines for each entity, whether the entity speaks or not. An ambient sound detector detects noises in the environment. An individual role detector derives basic activity like ldquowalkingrdquo or ldquointeracting with tablerdquo from the extracted entity properties of the 3-D tracker. From the derived multimodal observations, different situations like ldquoaperitifrdquo or ldquopresentationrdquo are learned and detected using statistical models (HMMs). The objective of the proposed general framework is two-fold: the automatic offline analysis of human behavior recordings and the online detection of learned human behavior models. To evaluate the proposed approach, several multimodal recordings showing different situations have been conducted. The obtained results, in particular for offline analysis, are very good, showing that multimodality as well as multiperson observation generation are beneficial for situation recognition.

Published in:

Automation Science and Engineering, IEEE Transactions on  (Volume:6 ,  Issue: 4 )