By Topic

Model predictive sensor scheduling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Eriko Iwasa ; Department of Electrical Engineering and Bioscience, Waseda University, Tokyo, Japan ; Kenko Uchida

The sensor scheduling is to select a sensor (or a group of sensors) from multiple sensors at each time step so as to perform optimally a task based on the sensed data. In this paper, we pose a model predictive type deterministic/stochastic sensor scheduling problem for discrete-time linear Gaussian time-varying systems, and develop an approach to solve these problems based on the dynamic programming recursion. We show first that, in a special case of deterministic scheduling where the Riccati recursion of error covariance satisfies a specific structural condition, the online optimization using the dynamic programming is reduced to a static optimization, so that the model predictive sensor scheduling can be easily implemented online. Next, we discuss the stochastic scheduling problem, and show an alternative condition of optimization reduction, which lead to a stochastic sensor scheduling easily implemented online. Finally, we propose two practical sensor schedulings for deterministic and stochastic case, and discuss an example to illustrate the two sensor schedulings.

Published in:

Control, Automation and Systems, 2008. ICCAS 2008. International Conference on

Date of Conference:

14-17 Oct. 2008