By Topic

On the Impact of Atmospheric Correction on Lossy Compression of Multispectral and Hyperspectral Imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qian Du ; Dept. of Electr. & Comput. Eng., Mississippi State Univ., Starkville, MS ; Fowler, J.E. ; Wei Zhu

Reflectance data are often preferred to radiance data in applications of multispectral and hyperspectral imagery in which subtle spectral features are analyzed. In such applications, atmospheric correction, the process which provides radiance-to-reflectance conversion, plays a prominent role in the data-distribution and archiving pipeline. Lossy compression, often in the form of the JPEG2000 standard, will also likely factor into the distribution and archiving data flow. The relative position of data compression with respect to atmospheric correction is considered and evaluated with experimental results on both multispectral and hyperspectral imagery, and recommendations on an appropriate order for compression in the data-flow chain are made.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:47 ,  Issue: 1 )