By Topic

Design and Test of a High-Power High-Efficiency Loosely Coupled Planar Wireless Power Transfer System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhen Ning Low ; Electr. & Comput. Eng. Dept., Univ. of Florida, Gainesville, FL ; Raul Andres Chinga ; Ryan Tseng ; Jenshan Lin

In this paper, a high-power high-efficiency wireless-power-transfer system using the class-E operation for transmitter via inductive coupling has been designed and fabricated using the proposed design approach. The system requires no complex external control system but relies on its natural impedance response to achieve the desired power-delivery profile across a wide range of load resistances while maintaining high efficiency to prevent any heating issues. The proposed system consists of multichannels with independent gate drive to control power delivery. The fabricated system is compact and capable of 295 W of power delivery at 75.7% efficiency with forced air cooling and of 69 W of power delivery at 74.2% efficiency with convection cooling. This is the highest power and efficiency of a loosely coupled planar wireless-power-transfer system reported to date.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:56 ,  Issue: 5 )