By Topic

Low-Delay Low-Complexity Bandwidth-Constrained Wireless Video Transmission Using SVC Over MIMO Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mohammad K. Jubran ; Dept. of Electr. Eng., Birzeit Univ., Birzeit ; Manu Bansal ; Lisimachos P. Kondi

We propose an efficient strategy for the transmission of scalable video over multiple-input multiple-output (MIMO) wireless systems. In this paper, we use the latest scalable H.264 codec (SVC), which provides combined temporal, quality and spatial scalability. At the transmitter, we estimate the decoded video distortion for given channel conditions taking into account the effects of quantization, packet loss and error concealment. The proposed scalable decoder distortion algorithm offers low delay and low complexity. The performance of this method is validated using experimental results. In our proposed system, we use a MIMO system with orthogonal space-time block codes (O-STBC) that provides spatial diversity and guarantees independent transmission of different symbols within the block code. The bandwidth constrained allocation problem considered here is simplified and solved for one O-STBC symbol at a time. Furthermore, we take the advantage of the hierarchical structure of SVC to attain the optimal solution for each group of pictures (GOP) of the video sequence. We incorporate the estimated decoder distortion to optimally select the application layer parameter, i.e., quantization parameter (QP), and physical layer parameters, i.e., channel coding rate and modulation type for wireless video transmission.

Published in:

IEEE Transactions on Multimedia  (Volume:10 ,  Issue: 8 )