By Topic

Observing and Modeling Multifrequency Scattering of Maize During the Whole Growth Cycle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Della Vecchia, A. ; Dept. of Comput. Sci., Tor Vergata Univ., Rome ; Ferrazzoli, P. ; Guerriero, L. ; Ninivaggi, L.
more authors

The objective of this paper is to carry out a systematic investigation about the sensitivity of radar to maize crop growth and soil moisture by considering a wide range of frequencies and angles and all linear polarizations. We show the results of a correlation study carried out on the data collected on a maize field at Suberg, in the Swiss region named Central Plain, by the multifrequency RAdio ScAtteroMeter (RASAM). This agricultural field was monitored over a long period of time at a wide range of frequencies and observation angles so that the correlation between the backscattering and crop height and the biomass and soil moisture was studied under several plant and observation conditions. Moreover, we describe some recent refinements applied to the vegetation scattering model developed at Tor Vergata University, Rome, Italy, and we evaluate the accuracy of extended comparisons between model outputs and RASAM signatures. The Tor Vergata model is finally applied to give a theoretical basis to the experimental correlation findings.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:46 ,  Issue: 11 )