By Topic

Using Vagueness Measures to Re-rank Documents Retrieved by a Fuzzy Set Information Retrieval Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lynn, S. ; Dept. of Comput. Sci., Brigham Young Univ., Provo, UT ; Yiu-Kai Ng

Traditional information retrieval (IR) systems evaluate user queries and retrieve/rank documents based on matching keywords in user queries with words in documents.These exact word-matching and ranking approaches ignore too many relevant documents that do not contain the exact keywords as specified in a user query. Instead of considering these traditional approaches, we propose to retrieve documents using a fuzzy set IR model and rank retrieved documents for any vague query using the "vagueness score" of the documents based on the word senses as defined in WordNet. Using the vagueness scores, we rank the most highest "relevant" documents of a vague query qas the ones that best cover the different possible senses of keywords in q. The proposed word-sense ranking method enhances the existing ranking approaches on ordering retrieved documents for vague queries and thus provides a more reliable and elegant tool for information retrieval.

Published in:

Fuzzy Systems and Knowledge Discovery, 2008. FSKD '08. Fifth International Conference on  (Volume:5 )

Date of Conference:

18-20 Oct. 2008