By Topic

Content based image retrieval using curvelet transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ishrat Jahan Sumana ; Gippsland School of Information Technology, Monash University, Churchill, Victoria 3842, Australia ; Md. Monirul Islam ; Dengsheng Zhang ; Guojun Lu

Feature extraction is a key issue in content-based image retrieval (CBIR). In the past, a number of texture features have been proposed in literature, including statistic methods and spectral methods. However, most of them are not able to accurately capture the edge information which is the most important texture feature in an image. Recent researches on multi-scale analysis, especially the curvelet research, provide good opportunity to extract more accurate texture feature for image retrieval. Curvelet was originally proposed for image denoising and has shown promising performance. In this paper, a new image feature based on curvelet transform has been proposed. We apply discrete curvelet transform on texture images and compute the low order statistics from the transformed images. Images are then represented using the extracted texture features. Retrieval results show, it significantly outperforms the widely used Gabor texture feature.

Published in:

Multimedia Signal Processing, 2008 IEEE 10th Workshop on

Date of Conference:

8-10 Oct. 2008