By Topic

Effects of Resonances in Corrugated Horn Antennas for a 22-GHz Balancing Radiometer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Evelyn DeWachter ; Inst. of Appl. Phys., Univ. of Bern, Bern ; Axel Murk ; Corinne Straub ; Alexander Haefele
more authors

The Stratospheric WAter vapor RAdiometer (SWARA) is a microwave radiometer designed for ground-based measurements of water vapor (H2O) in the middle atmosphere (20 to 80 km), including the stratosphere and mesosphere. The instrument is operating in a noncryogenic balancing calibration mode. Since its deployment, features have been observed in the spectrum which can be attributed to resonant variations of the antenna pattern of the corrugated horn. This paper presents copolar and crosspolar antenna pattern measurements of two sister antennas of the SWARA horn, as well as water vapor measurements from both antennas on the ground-based microwave radiometer MI ddle Atmospheric WAter vapor RA diometer. We show that small irregularities in the frequency spectrum at the -20-dB level are visible in the copolar pattern, which, due to the balancing operation scheme used for the radiometer, lead to features in the spectrum that have the same or even higher brightness temperature as the line of interest.

Published in:

IEEE Geoscience and Remote Sensing Letters  (Volume:6 ,  Issue: 1 )