By Topic

Asymmetric Principal Component and Discriminant Analyses for Pattern Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Xudong Jiang ; Nanyang Technological University, Singapore

This paper studies the roles of the principal component and discriminant analyses in the pattern classification and explores their problems with the asymmetric classes and/or the unbalanced training data. An asymmetric principal component analysis (APCA) is proposed to remove the unreliable dimensions more effectively than the conventional PCA. Targeted at the two-class problem, an asymmetric discriminant analysis in the APCA subspace is proposed to regularize the eigenvalue that is, in general, a biased estimate of the variance in the corresponding dimension. These efforts facilitate a reliable and discriminative feature extraction for the asymmetric classes and/or the unbalanced training data. The proposed approach is validated in the experiments by comparing it with the related methods. It consistently achieves the highest classification accuracy among all tested methods in the experiments.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:31 ,  Issue: 5 )