By Topic

QPACE: Quantum Chromodynamics Parallel Computing on the Cell Broadband Engine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

20 Author(s)

Application-driven computers for lattice gauge theory simulations have often been based on system-on-chip designs, but the development costs can be prohibitive for academic project budgets. An alternative approach uses compute nodes based on a commercial processor tightly coupled to a custom-designed network processor. Preliminary analysis shows that this solution offers good performance, but it also entails several challenges, including those arising from the processor's multicore structure and from implementing the network processor on a field-programmable gate array.

Published in:

Computing in Science & Engineering  (Volume:10 ,  Issue: 6 )