By Topic

Scalable data parallel algorithms for texture synthesis using Gibbs random fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bader, D.A. ; Dept. of Electr. Eng., Maryland Univ., College Park, MD, USA ; JaJa, J. ; Chellappa, R.

This article introduces scalable data parallel algorithms for image processing. Focusing on Gibbs and Markov random field model representation for textures, we present parallel algorithms for texture synthesis, compression, and maximum likelihood parameter estimation, currently implemented on Thinking Machines CM-2 and CM-5. The use of fine-grained, data parallel processing techniques yields real-time algorithms for texture synthesis and compression that are substantially faster than the previously known sequential implementations. Although current implementations are on Connection Machines, the methodology presented enables machine-independent scalable algorithms for a number of problems in image processing and analysis

Published in:

Image Processing, IEEE Transactions on  (Volume:4 ,  Issue: 10 )