By Topic

Penalized maximum-likelihood image reconstruction using space-alternating generalized EM algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fessler, J.A. ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; Hero, A.O.

Most expectation-maximization (EM) type algorithms for penalized maximum-likelihood image reconstruction converge slowly, particularly when one incorporates additive background effects such as scatter, random coincidences, dark current, or cosmic radiation. In addition, regularizing smoothness penalties (or priors) introduce parameter coupling, rendering intractable the M-steps of most EM-type algorithms. This paper presents space-alternating generalized EM (SAGE) algorithms for image reconstruction, which update the parameters sequentially using a sequence of small “hidden” data spaces, rather than simultaneously using one large complete-data space. The sequential update decouples the M-step, so the maximization can typically be performed analytically. We introduce new hidden-data spaces that are less informative than the conventional complete-data space for Poisson data and that yield significant improvements in convergence rate. This acceleration is due to statistical considerations, not numerical overrelaxation methods, so monotonic increases in the objective function are guaranteed. We provide a general global convergence proof for SAGE methods with nonnegativity constraints

Published in:

Image Processing, IEEE Transactions on  (Volume:4 ,  Issue: 10 )