By Topic

Motor system’s role in grounding, receptive field development, and shape recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yoonsuck Choe ; Dept. of Comput. Sci., Texas A&M Univ., College Station, TX ; Huei-Fang Yang ; Misra, N.

Vision is basically a sensory modality, so it is no surprise that the investigation into the brainpsilas visual functions has been focused on its sensory aspect. Thus, questions like (1) how can external geometric properties represented in internal states of the visual system be grounded, (2) how do the visual cortical receptive fields (RFs) form, and (3) how can visual shapes be recognized have all been addressed within the framework of sensory information processing. However, this view is being challenged on multiple fronts, with an increasing emphasis on the motor aspect of visual function. In this paper, we will review works that implicate the important role of motor function in vision, and discuss our latest results touching upon the issues of grounding, RF development, and shape recognition. Our main findings are that (1) motor primitives play a fundamental role in grounding, (2) RF learning can be biased and enhanced by the motor system, and (3) shape recognition is easier with motor-based representations than with sensor-based representations. The insights we gained here will help us better understand visual cortical function. Also, we expect the motor-oriented view of visual cortical function to be generalizable to other sensory cortices such as somatosensory and auditory cortices.

Published in:

Development and Learning, 2008. ICDL 2008. 7th IEEE International Conference on

Date of Conference:

9-12 Aug. 2008