By Topic

A CGS-MSM Parallel Genetic Algorithm Based on Multi-agent

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tinghong Zhao ; Coll. of Fluid Power & Control Eng., Lanzhou Univ. of Technol., Lanzhou ; Zibin Man ; Zhijun Wan ; Guiquan Bi

In order to solve problem of the speed of convergence and early-maturing of the serial genetic algorithm, people begin to study the parallel genetic algorithm. However most researcher devoted to study the single way parallel genetic algorithm (PGA), while solving some combination optimizing problem, have made good result, but as to the more complicated combination optimizing problem, all have certain deficiencies. This paper propose a coarse grain size-master slaver model PGA (CGS-MSM PGA), which is make up of several coarse grain size PGA (CGS-PGA) that is combine of several master-slaver model parallel genetic algorithm (MSM-PGA), and every sub-algorithm is one agent. This algorithm has improved the speed and precision of calculation greatly through the good communication coordination among many agents, utilized the advantages of CGS-PGA and MSM-PGA, overcome the shortcoming of their two.

Published in:

Genetic and Evolutionary Computing, 2008. WGEC '08. Second International Conference on

Date of Conference:

25-26 Sept. 2008