Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

PARM—An Efficient Algorithm to Mine Association Rules From Spatial Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Qin Ding ; Dept. of Comput. Sci., East Carolina Univ., Greenville, NC ; Qiang Ding ; Perrizo, W.

Association rule mining, originally proposed for market basket data, has potential applications in many areas. Spatial data, such as remote sensed imagery (RSI) data, is one of the promising application areas. Extracting interesting patterns and rules from spatial data sets, composed of images and associated ground data, can be of importance in precision agriculture, resource discovery, and other areas. However, in most cases, the sizes of the spatial data sets are too large to be mined in a reasonable amount of time using existing algorithms. In this paper, we propose an efficient approach to derive association rules from spatial data using Peano count tree (P-tree) structure. P-tree structure provides a lossless and compressed representation of spatial data. Based on P-trees, an efficient association rule mining algorithm PARM with fast support calculation and significant pruning techniques is introduced to improve the efficiency of the rule mining process. The P-tree based association rule mining (PARM) algorithm is implemented and compared with FP-growth and Apriori algorithms. Experimental results showed that our algorithm is superior for association rule mining on RSI spatial data.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:38 ,  Issue: 6 )