By Topic

Attentional Landmarks and Active Gaze Control for Visual SLAM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Frintrop, S. ; Inst. of Comput. Sci. III, Rheinische Friedrich-Wilhems-Univ., Bonn ; Jensfelt, P.

This paper is centered around landmark detection, tracking, and matching for visual simultaneous localization and mapping using a monocular vision system with active gaze control. We present a system that specializes in creating and maintaining a sparse set of landmarks based on a biologically motivated feature-selection strategy. A visual attention system detects salient features that are highly discriminative and ideal candidates for visual landmarks that are easy to redetect. Features are tracked over several frames to determine stable landmarks and to estimate their 3-D position in the environment. Matching of current landmarks to database entries enables loop closing. Active gaze control allows us to overcome some of the limitations of using a monocular vision system with a relatively small field of view. It supports 1) the tracking of landmarks that enable a better pose estimation, 2) the exploration of regions without landmarks to obtain a better distribution of landmarks in the environment, and 3) the active redetection of landmarks to enable loop closing in situations in which a fixed camera fails to close the loop. Several real-world experiments show that accurate pose estimation is obtained with the presented system and that active camera control outperforms the passive approach.

Published in:

Robotics, IEEE Transactions on  (Volume:24 ,  Issue: 5 )