By Topic

Game theoretic approach for channel assignment and power control with no-internal-regret learning in wireless ad hoc networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
C. K. Tan ; Faculty of Engineering, Multimedia University, Jalan Multimedia ; M. L. Sim ; T. C. Chuah

In wireless ad hoc networks, co-channel interference can be suppressed effectively through proper integration of channel assignment (CA) and power control (PC) techniques. Unlike centralised cellular networks where CA and PC can be coordinated by base stations, the integration of CA and PC into infrastructureless wireless ad hoc networks where no global information is available is more technically challenging. The authors model the CA and PC problems as a non-cooperative game, in which all wireless users jointly pick an optimal channel and power level to minimise a joint cost function. To prove the existence and uniqueness of Nash equilibrium (NE) in the proposed non-cooperative CA and PC game (NCPG), the authors break the NCPG into a CA subgame and a PC subgame. It is shown that if NE exists in these two subgames, the existence of NE in the NCPG is ensured. Nonetheless, due to unpredictable network topology and diverse system conditions in wireless ad hoc networks, the NCPG may encounter the dasiaping-pongdasia effect that renders NE unattainable. By incorporating a call-dropping strategy and no-internal-regret learning into the NCPG, an iterative and distributed algorithm that ensures convergence to NE is proposed. It is shown through simulation results that the proposed approach leads to convergence and results in significant improvements in power preservation and system capacity as compared with the popular distributed dynamic CA technique incorporated with PC.

Published in:

IET Communications  (Volume:2 ,  Issue: 9 )