By Topic

Void Formation Study of Flip Chip in Package Using No-Flow Underfill

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sangil Lee ; George W. Woodruff Sch. of Mech. Eng., Georgia Inst. of Technol., Atlanta, GA ; Myung Jin Yim ; Master, R.N. ; Wong, C.P.
more authors

The advanced flip chip in package (FCIP) process using no-flow underfill material for high I/O density and fine-pitch interconnect applications presents challenges for an assembly process that must achieve high electrical interconnect yield and high reliability performance. With respect to high reliability, the voids formed in the underfill between solder bumps or inside the solder bumps during the no-flow underfill assembly process of FCIP devices have been typically considered one of the critical concerns affecting assembly yield and reliability performance. In this paper, the plausible causes of underfill void formation in FCIP using no-flow underfill were investigated through systematic experimentation with different types of test vehicles. For instance, the effects of process conditions, material properties, and chemical reaction between the solder bumps and no-flow underfill materials on the void formation behaviors were investigated in advanced FCIP assemblies. In this investigation, the chemical reaction between solder and underfill during the solder wetting and underfill cure process has been found to be one of the most significant factors for void formation in high I/O and fine-pitch FCIP assembly using no-flow underfill materials.

Published in:

Electronics Packaging Manufacturing, IEEE Transactions on  (Volume:31 ,  Issue: 4 )