By Topic

Generalized Linear Discriminant Analysis: A Unified Framework and Efficient Model Selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shuiwang Ji ; Dept. of Comput. Sci. & Eng., Arizona State Univ., Tempe, AZ ; Jieping Ye

High-dimensional data are common in many domains, and dimensionality reduction is the key to cope with the curse-of-dimensionality. Linear discriminant analysis (LDA) is a well-known method for supervised dimensionality reduction. When dealing with high-dimensional and low sample size data, classical LDA suffers from the singularity problem. Over the years, many algorithms have been developed to overcome this problem, and they have been applied successfully in various applications. However, there is a lack of a systematic study of the commonalities and differences of these algorithms, as well as their intrinsic relationships. In this paper, a unified framework for generalized LDA is proposed, which elucidates the properties of various algorithms and their relationships. Based on the proposed framework, we show that the matrix computations involved in LDA-based algorithms can be simplified so that the cross-validation procedure for model selection can be performed efficiently. We conduct extensive experiments using a collection of high-dimensional data sets, including text documents, face images, gene expression data, and gene expression pattern images, to evaluate the proposed theories and algorithms.

Published in:

IEEE Transactions on Neural Networks  (Volume:19 ,  Issue: 10 )