By Topic

Snap-Action Bistable Micromechanisms Actuated by Nonlinear Resonance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jasmina Casals-Terre ; Dept. of Mech. Eng., Tech. Univ. of Catalonia, Terrassa ; Andreu Fargas-Marques ; Andrei M. Shkel

This paper presents analysis, design, realization, and experimental demonstration of a bistable switch actuated dynamically utilizing mechanical resonance phenomenon. We demonstrated that if a bistable structure is driven into a resonance near one of its states, it may achieve a large enough amplitude of vibration, sufficient to switch between its stable states. Using energy analysis, we concluded that dynamic switching of bistable structures may provide significant energy advantages over conventional static-switching approaches. To confirm the results, we derived analytically the closed-form actuation conditions guaranteeing switching between the states of a bistable structure and applied these conditions to experimental devices. Micromachined prototypes of dynamically actuated bistable switches were designed, fabricated, and characterized. We demonstrated experimentally that resonant dynamic switching provides energy saving of around 60% at atmospheric pressure with proportional increase in efficiency as the pressure decreases.

Published in:

Journal of Microelectromechanical Systems  (Volume:17 ,  Issue: 5 )