By Topic

An Analysis of Constructed Categories for Textual Classification Using Fuzzy Similarity and Agglomerative Hierarchical Methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Marcus Vinicius C. Guelpeli ; Dept. de Cienc. da Comput., Univ. Fed. Fluminense, Niteroi ; Ana Cristina Bicharra Garcia

Ambiguity is a challenge faced by systems that handle natural language. To assuage the issue of linguistic ambiguities found in text classification, this work proposes a text categorizer using the methodology of Fuzzy Similarity. The grouping algorithms Stars and Cliques are adopted in the Agglomerative Hierarchical method and they identify the groups of texts by specifying some time of relationship rule to create categories based on the similarity analysis of the textual terms. The proposal is that based on the methodology suggested, categories can be created from the analysis of the degree of similarity of the texts to be classified, without needing to determine the number of initial categories. The combination of techniques proposed in the categorizerpsilas phases brought satisfactory results, proving to be efficient in textual classification.

Published in:

Signal-Image Technologies and Internet-Based System, 2007. SITIS '07. Third International IEEE Conference on

Date of Conference:

16-18 Dec. 2007