By Topic

Analysis of the reliability of package-on-package devices manufactured using various underfill methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vicky Wang ; Henkel Loctite (China) Co., Ltd, Yantai, Shandong, China 264006 ; Dan Maslyk

As next-generation electronic packages continue to dictate smaller devices and more functionality, package-on-package (POP) configurations have started to gain popularity in the SMT industry. These stacked package devices enable board space savings, simplified system design, enhanced performance, and lower pin count. Although POPs are experiencing rapid growth for certain applications such as mobile handsets, digital cameras, PDAs, and MP3 players, concerns over POP drop test and thermal cycling performance reliability issues have been raised. Recently, the electronics industry has gathered a great deal of POP reliability data to help optimize the POP manufacturing and application process. A number of studies and tests have been conducted to investigate the board-level reliability of POPs in relation to drop test and thermal cycling performance. The test conditions have examined packages manufactured with and without underfill and have also analyzed the impact of different underfill dispensing patterns (i.e. full underfill, cornerbond and edgebond) However, few papers discuss the effects of the underfilling strategy-such as undefilling the bottom component only or underfilling both top and bottom components, or the effects of solder alloy choice on the reliability of POP packaging. In this paper, the effects of underfill dispensing type and POP ball alloy type on the reliability of POP devices during drop testing and thermal cycle testing were evaluated. It was found that both underfill dispensing type and alloy type have a profound effect on POP reliability. The study results revealed that underfilling only the bottom component seems to have no significant contribution to POP drop test reliability. Underfilling both the top and bottom components yields better drop test performance than underfilling only the bottom component. In addition, the SAC105 (98.5%Sn + 1.0%Ag + 0.5%Cu) bump alloy shows better drop test performance than the SAC305 (96.5%Sn + 3.0%Ag + 0.5%Cu)- alloy.

Published in:

Electronic Packaging Technology & High Density Packaging, 2008. ICEPT-HDP 2008. International Conference on

Date of Conference:

28-31 July 2008